455 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			455 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* inftrees.c -- generate Huffman trees for efficient decoding
 | |
|  * Copyright (C) 1995-2002 Mark Adler
 | |
|  * For conditions of distribution and use, see copyright notice in zlib.h 
 | |
|  */
 | |
| 
 | |
| #include "zutil.h"
 | |
| #include "inftrees.h"
 | |
| 
 | |
| #if !defined(BUILDFIXED) && !defined(STDC)
 | |
| #  define BUILDFIXED   /* non ANSI compilers may not accept inffixed.h */
 | |
| #endif
 | |
| 
 | |
| const char inflate_copyright[] =
 | |
|    " inflate 1.1.4 Copyright 1995-2002 Mark Adler ";
 | |
| /*
 | |
|   If you use the zlib library in a product, an acknowledgment is welcome
 | |
|   in the documentation of your product. If for some reason you cannot
 | |
|   include such an acknowledgment, I would appreciate that you keep this
 | |
|   copyright string in the executable of your product.
 | |
|  */
 | |
| struct internal_state  {int dummy;}; /* for buggy compilers */
 | |
| 
 | |
| /* simplify the use of the inflate_huft type with some defines */
 | |
| #define exop word.what.Exop
 | |
| #define bits word.what.Bits
 | |
| 
 | |
| 
 | |
| local int huft_build OF((
 | |
|     uIntf *,            /* code lengths in bits */
 | |
|     uInt,               /* number of codes */
 | |
|     uInt,               /* number of "simple" codes */
 | |
|     const uIntf *,      /* list of base values for non-simple codes */
 | |
|     const uIntf *,      /* list of extra bits for non-simple codes */
 | |
|     inflate_huft * FAR*,/* result: starting table */
 | |
|     uIntf *,            /* maximum lookup bits (returns actual) */
 | |
|     inflate_huft *,     /* space for trees */
 | |
|     uInt *,             /* hufts used in space */
 | |
|     uIntf * ));         /* space for values */
 | |
| 
 | |
| /* Tables for deflate from PKZIP's appnote.txt. */
 | |
| local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
 | |
|         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
 | |
|         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
 | |
|         /* see note #13 above about 258 */
 | |
| local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
 | |
|         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
 | |
|         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
 | |
| local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
 | |
|         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
 | |
|         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
 | |
|         8193, 12289, 16385, 24577};
 | |
| local const uInt cpdext[30] = { /* Extra bits for distance codes */
 | |
|         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
 | |
|         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
 | |
|         12, 12, 13, 13};
 | |
| 
 | |
| /*
 | |
|    Huffman code decoding is performed using a multi-level table lookup.
 | |
|    The fastest way to decode is to simply build a lookup table whose
 | |
|    size is determined by the longest code.  However, the time it takes
 | |
|    to build this table can also be a factor if the data being decoded
 | |
|    is not very long.  The most common codes are necessarily the
 | |
|    shortest codes, so those codes dominate the decoding time, and hence
 | |
|    the speed.  The idea is you can have a shorter table that decodes the
 | |
|    shorter, more probable codes, and then point to subsidiary tables for
 | |
|    the longer codes.  The time it costs to decode the longer codes is
 | |
|    then traded against the time it takes to make longer tables.
 | |
| 
 | |
|    This results of this trade are in the variables lbits and dbits
 | |
|    below.  lbits is the number of bits the first level table for literal/
 | |
|    length codes can decode in one step, and dbits is the same thing for
 | |
|    the distance codes.  Subsequent tables are also less than or equal to
 | |
|    those sizes.  These values may be adjusted either when all of the
 | |
|    codes are shorter than that, in which case the longest code length in
 | |
|    bits is used, or when the shortest code is *longer* than the requested
 | |
|    table size, in which case the length of the shortest code in bits is
 | |
|    used.
 | |
| 
 | |
|    There are two different values for the two tables, since they code a
 | |
|    different number of possibilities each.  The literal/length table
 | |
|    codes 286 possible values, or in a flat code, a little over eight
 | |
|    bits.  The distance table codes 30 possible values, or a little less
 | |
|    than five bits, flat.  The optimum values for speed end up being
 | |
|    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
 | |
|    The optimum values may differ though from machine to machine, and
 | |
|    possibly even between compilers.  Your mileage may vary.
 | |
|  */
 | |
| 
 | |
| 
 | |
| /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
 | |
| #define BMAX 15         /* maximum bit length of any code */
 | |
| 
 | |
| local int huft_build(b, n, s, d, e, t, m, hp, hn, v)
 | |
| uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
 | |
| uInt n;                 /* number of codes (assumed <= 288) */
 | |
| uInt s;                 /* number of simple-valued codes (0..s-1) */
 | |
| const uIntf *d;         /* list of base values for non-simple codes */
 | |
| const uIntf *e;         /* list of extra bits for non-simple codes */
 | |
| inflate_huft * FAR *t;  /* result: starting table */
 | |
| uIntf *m;               /* maximum lookup bits, returns actual */
 | |
| inflate_huft *hp;       /* space for trees */
 | |
| uInt *hn;               /* hufts used in space */
 | |
| uIntf *v;               /* working area: values in order of bit length */
 | |
| /* Given a list of code lengths and a maximum table size, make a set of
 | |
|    tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
 | |
|    if the given code set is incomplete (the tables are still built in this
 | |
|    case), or Z_DATA_ERROR if the input is invalid. */
 | |
| {
 | |
| 
 | |
|   uInt a;                       /* counter for codes of length k */
 | |
|   uInt c[BMAX+1];               /* bit length count table */
 | |
|   uInt f;                       /* i repeats in table every f entries */
 | |
|   int g;                        /* maximum code length */
 | |
|   int h;                        /* table level */
 | |
|   register uInt i;              /* counter, current code */
 | |
|   register uInt j;              /* counter */
 | |
|   register int k;               /* number of bits in current code */
 | |
|   int l;                        /* bits per table (returned in m) */
 | |
|   uInt mask;                    /* (1 << w) - 1, to avoid cc -O bug on HP */
 | |
|   register uIntf *p;            /* pointer into c[], b[], or v[] */
 | |
|   inflate_huft *q;              /* points to current table */
 | |
|   struct inflate_huft_s r;      /* table entry for structure assignment */
 | |
|   inflate_huft *u[BMAX];        /* table stack */
 | |
|   register int w;               /* bits before this table == (l * h) */
 | |
|   uInt x[BMAX+1];               /* bit offsets, then code stack */
 | |
|   uIntf *xp;                    /* pointer into x */
 | |
|   int y;                        /* number of dummy codes added */
 | |
|   uInt z;                       /* number of entries in current table */
 | |
| 
 | |
| 
 | |
|   /* Generate counts for each bit length */
 | |
|   p = c;
 | |
| #define C0 *p++ = 0;
 | |
| #define C2 C0 C0 C0 C0
 | |
| #define C4 C2 C2 C2 C2
 | |
|   C4                            /* clear c[]--assume BMAX+1 is 16 */
 | |
|   p = b;  i = n;
 | |
|   do {
 | |
|     c[*p++]++;                  /* assume all entries <= BMAX */
 | |
|   } while (--i);
 | |
|   if (c[0] == n)                /* null input--all zero length codes */
 | |
|   {
 | |
|     *t = (inflate_huft *)Z_NULL;
 | |
|     *m = 0;
 | |
|     return Z_OK;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /* Find minimum and maximum length, bound *m by those */
 | |
|   l = *m;
 | |
|   for (j = 1; j <= BMAX; j++)
 | |
|     if (c[j])
 | |
|       break;
 | |
|   k = j;                        /* minimum code length */
 | |
|   if ((uInt)l < j)
 | |
|     l = j;
 | |
|   for (i = BMAX; i; i--)
 | |
|     if (c[i])
 | |
|       break;
 | |
|   g = i;                        /* maximum code length */
 | |
|   if ((uInt)l > i)
 | |
|     l = i;
 | |
|   *m = l;
 | |
| 
 | |
| 
 | |
|   /* Adjust last length count to fill out codes, if needed */
 | |
|   for (y = 1 << j; j < i; j++, y <<= 1)
 | |
|     if ((y -= c[j]) < 0)
 | |
|       return Z_DATA_ERROR;
 | |
|   if ((y -= c[i]) < 0)
 | |
|     return Z_DATA_ERROR;
 | |
|   c[i] += y;
 | |
| 
 | |
| 
 | |
|   /* Generate starting offsets into the value table for each length */
 | |
|   x[1] = j = 0;
 | |
|   p = c + 1;  xp = x + 2;
 | |
|   while (--i) {                 /* note that i == g from above */
 | |
|     *xp++ = (j += *p++);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /* Make a table of values in order of bit lengths */
 | |
|   p = b;  i = 0;
 | |
|   do {
 | |
|     if ((j = *p++) != 0)
 | |
|       v[x[j]++] = i;
 | |
|   } while (++i < n);
 | |
|   n = x[g];                     /* set n to length of v */
 | |
| 
 | |
| 
 | |
|   /* Generate the Huffman codes and for each, make the table entries */
 | |
|   x[0] = i = 0;                 /* first Huffman code is zero */
 | |
|   p = v;                        /* grab values in bit order */
 | |
|   h = -1;                       /* no tables yet--level -1 */
 | |
|   w = -l;                       /* bits decoded == (l * h) */
 | |
|   u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
 | |
|   q = (inflate_huft *)Z_NULL;   /* ditto */
 | |
|   z = 0;                        /* ditto */
 | |
| 
 | |
|   /* go through the bit lengths (k already is bits in shortest code) */
 | |
|   for (; k <= g; k++)
 | |
|   {
 | |
|     a = c[k];
 | |
|     while (a--)
 | |
|     {
 | |
|       /* here i is the Huffman code of length k bits for value *p */
 | |
|       /* make tables up to required level */
 | |
|       while (k > w + l)
 | |
|       {
 | |
|         h++;
 | |
|         w += l;                 /* previous table always l bits */
 | |
| 
 | |
|         /* compute minimum size table less than or equal to l bits */
 | |
|         z = g - w;
 | |
|         z = z > (uInt)l ? l : z;        /* table size upper limit */
 | |
|         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
 | |
|         {                       /* too few codes for k-w bit table */
 | |
|           f -= a + 1;           /* deduct codes from patterns left */
 | |
|           xp = c + k;
 | |
|           if (j < z)
 | |
|             while (++j < z)     /* try smaller tables up to z bits */
 | |
|             {
 | |
|               if ((f <<= 1) <= *++xp)
 | |
|                 break;          /* enough codes to use up j bits */
 | |
|               f -= *xp;         /* else deduct codes from patterns */
 | |
|             }
 | |
|         }
 | |
|         z = 1 << j;             /* table entries for j-bit table */
 | |
| 
 | |
|         /* allocate new table */
 | |
|         if (*hn + z > MANY)     /* (note: doesn't matter for fixed) */
 | |
|           return Z_DATA_ERROR;  /* overflow of MANY */
 | |
|         u[h] = q = hp + *hn;
 | |
|         *hn += z;
 | |
| 
 | |
|         /* connect to last table, if there is one */
 | |
|         if (h)
 | |
|         {
 | |
|           x[h] = i;             /* save pattern for backing up */
 | |
|           r.bits = (Byte)l;     /* bits to dump before this table */
 | |
|           r.exop = (Byte)j;     /* bits in this table */
 | |
|           j = i >> (w - l);
 | |
|           r.base = (uInt)(q - u[h-1] - j);   /* offset to this table */
 | |
|           u[h-1][j] = r;        /* connect to last table */
 | |
|         }
 | |
|         else
 | |
|           *t = q;               /* first table is returned result */
 | |
|       }
 | |
| 
 | |
|       /* set up table entry in r */
 | |
|       r.bits = (Byte)(k - w);
 | |
|       if (p >= v + n)
 | |
|         r.exop = 128 + 64;      /* out of values--invalid code */
 | |
|       else if (*p < s)
 | |
|       {
 | |
|         r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
 | |
|         r.base = *p++;          /* simple code is just the value */
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
 | |
|         r.base = d[*p++ - s];
 | |
|       }
 | |
| 
 | |
|       /* fill code-like entries with r */
 | |
|       f = 1 << (k - w);
 | |
|       for (j = i >> w; j < z; j += f)
 | |
|         q[j] = r;
 | |
| 
 | |
|       /* backwards increment the k-bit code i */
 | |
|       for (j = 1 << (k - 1); i & j; j >>= 1)
 | |
|         i ^= j;
 | |
|       i ^= j;
 | |
| 
 | |
|       /* backup over finished tables */
 | |
|       mask = (1 << w) - 1;      /* needed on HP, cc -O bug */
 | |
|       while ((i & mask) != x[h])
 | |
|       {
 | |
|         h--;                    /* don't need to update q */
 | |
|         w -= l;
 | |
|         mask = (1 << w) - 1;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /* Return Z_BUF_ERROR if we were given an incomplete table */
 | |
|   return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| int inflate_trees_bits(c, bb, tb, hp, z)
 | |
| uIntf *c;               /* 19 code lengths */
 | |
| uIntf *bb;              /* bits tree desired/actual depth */
 | |
| inflate_huft * FAR *tb; /* bits tree result */
 | |
| inflate_huft *hp;       /* space for trees */
 | |
| z_streamp z;            /* for messages */
 | |
| {
 | |
|   int r;
 | |
|   uInt hn = 0;          /* hufts used in space */
 | |
|   uIntf *v;             /* work area for huft_build */
 | |
| 
 | |
|   if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL)
 | |
|     return Z_MEM_ERROR;
 | |
|   r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL,
 | |
|                  tb, bb, hp, &hn, v);
 | |
|   if (r == Z_DATA_ERROR)
 | |
|     z->msg = (char*)"oversubscribed dynamic bit lengths tree";
 | |
|   else if (r == Z_BUF_ERROR || *bb == 0)
 | |
|   {
 | |
|     z->msg = (char*)"incomplete dynamic bit lengths tree";
 | |
|     r = Z_DATA_ERROR;
 | |
|   }
 | |
|   ZFREE(z, v);
 | |
|   return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, hp, z)
 | |
| uInt nl;                /* number of literal/length codes */
 | |
| uInt nd;                /* number of distance codes */
 | |
| uIntf *c;               /* that many (total) code lengths */
 | |
| uIntf *bl;              /* literal desired/actual bit depth */
 | |
| uIntf *bd;              /* distance desired/actual bit depth */
 | |
| inflate_huft * FAR *tl; /* literal/length tree result */
 | |
| inflate_huft * FAR *td; /* distance tree result */
 | |
| inflate_huft *hp;       /* space for trees */
 | |
| z_streamp z;            /* for messages */
 | |
| {
 | |
|   int r;
 | |
|   uInt hn = 0;          /* hufts used in space */
 | |
|   uIntf *v;             /* work area for huft_build */
 | |
| 
 | |
|   /* allocate work area */
 | |
|   if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
 | |
|     return Z_MEM_ERROR;
 | |
| 
 | |
|   /* build literal/length tree */
 | |
|   r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
 | |
|   if (r != Z_OK || *bl == 0)
 | |
|   {
 | |
|     if (r == Z_DATA_ERROR)
 | |
|       z->msg = (char*)"oversubscribed literal/length tree";
 | |
|     else if (r != Z_MEM_ERROR)
 | |
|     {
 | |
|       z->msg = (char*)"incomplete literal/length tree";
 | |
|       r = Z_DATA_ERROR;
 | |
|     }
 | |
|     ZFREE(z, v);
 | |
|     return r;
 | |
|   }
 | |
| 
 | |
|   /* build distance tree */
 | |
|   r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
 | |
|   if (r != Z_OK || (*bd == 0 && nl > 257))
 | |
|   {
 | |
|     if (r == Z_DATA_ERROR)
 | |
|       z->msg = (char*)"oversubscribed distance tree";
 | |
|     else if (r == Z_BUF_ERROR) {
 | |
| #ifdef PKZIP_BUG_WORKAROUND
 | |
|       r = Z_OK;
 | |
|     }
 | |
| #else
 | |
|       z->msg = (char*)"incomplete distance tree";
 | |
|       r = Z_DATA_ERROR;
 | |
|     }
 | |
|     else if (r != Z_MEM_ERROR)
 | |
|     {
 | |
|       z->msg = (char*)"empty distance tree with lengths";
 | |
|       r = Z_DATA_ERROR;
 | |
|     }
 | |
|     ZFREE(z, v);
 | |
|     return r;
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   /* done */
 | |
|   ZFREE(z, v);
 | |
|   return Z_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* build fixed tables only once--keep them here */
 | |
| #ifdef BUILDFIXED
 | |
| local int fixed_built = 0;
 | |
| #define FIXEDH 544      /* number of hufts used by fixed tables */
 | |
| local inflate_huft fixed_mem[FIXEDH];
 | |
| local uInt fixed_bl;
 | |
| local uInt fixed_bd;
 | |
| local inflate_huft *fixed_tl;
 | |
| local inflate_huft *fixed_td;
 | |
| #else
 | |
| #include "inffixed.h"
 | |
| #endif
 | |
| 
 | |
| 
 | |
| int inflate_trees_fixed(bl, bd, tl, td, z)
 | |
| uIntf *bl;               /* literal desired/actual bit depth */
 | |
| uIntf *bd;               /* distance desired/actual bit depth */
 | |
| inflate_huft * FAR *tl;  /* literal/length tree result */
 | |
| inflate_huft * FAR *td;  /* distance tree result */
 | |
| z_streamp z;             /* for memory allocation */
 | |
| {
 | |
| #ifdef BUILDFIXED
 | |
|   /* build fixed tables if not already */
 | |
|   if (!fixed_built)
 | |
|   {
 | |
|     int k;              /* temporary variable */
 | |
|     uInt f = 0;         /* number of hufts used in fixed_mem */
 | |
|     uIntf *c;           /* length list for huft_build */
 | |
|     uIntf *v;           /* work area for huft_build */
 | |
| 
 | |
|     /* allocate memory */
 | |
|     if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
 | |
|       return Z_MEM_ERROR;
 | |
|     if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
 | |
|     {
 | |
|       ZFREE(z, c);
 | |
|       return Z_MEM_ERROR;
 | |
|     }
 | |
| 
 | |
|     /* literal table */
 | |
|     for (k = 0; k < 144; k++)
 | |
|       c[k] = 8;
 | |
|     for (; k < 256; k++)
 | |
|       c[k] = 9;
 | |
|     for (; k < 280; k++)
 | |
|       c[k] = 7;
 | |
|     for (; k < 288; k++)
 | |
|       c[k] = 8;
 | |
|     fixed_bl = 9;
 | |
|     huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl,
 | |
|                fixed_mem, &f, v);
 | |
| 
 | |
|     /* distance table */
 | |
|     for (k = 0; k < 30; k++)
 | |
|       c[k] = 5;
 | |
|     fixed_bd = 5;
 | |
|     huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd,
 | |
|                fixed_mem, &f, v);
 | |
| 
 | |
|     /* done */
 | |
|     ZFREE(z, v);
 | |
|     ZFREE(z, c);
 | |
|     fixed_built = 1;
 | |
|   }
 | |
| #endif
 | |
|   *bl = fixed_bl;
 | |
|   *bd = fixed_bd;
 | |
|   *tl = fixed_tl;
 | |
|   *td = fixed_td;
 | |
|   return Z_OK;
 | |
| }
 |